Abstract
We study wave emission from a transmitting system consisting of a magnetic-field-aligned cylindrical plasma channel of enhanced density and a loop antenna immersed in it. An ambient medium is assumed to be a cold uniform magnetoplasma. It is found that when the plasma density in the near-antenna zone increases, the total power radiated from the antenna increases considerably due to the efficient excitation of guided modes on the channel. We consider the emission of these modes from the channel end, assuming that the plasma density in the channel decreases gradually with distance from the loop. It is shown that under ionospheric conditions this transmitting system can be useful for improving the antenna coupling to VLF waves of the ambient plasma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.