Abstract

Abstract In this paper, to determine the efficacy of the porous bed on damping far-field wave energy, the wave dynamics around a circular plate is studied. By combining the appropriate boundary conditions, the unknown potential is attained for the free surface and the plate-covered region. The Bessel series solution is attained further, by employing the matched eigenfunction expansion technique. Wave force excitation on the circular plate, deflection of the plate, and flow distribution is calculated and examined to comprehend the efficacy of the current investigation. Moreover, the motion of the plate is assessed in the time domain. The study reveals a substantial reduction in wave amplitude on the plate’s leeward side because of the energy dissipation by the porous bed. Also the study concludes that for intermediate values of porosity with larger wavenumbers, approximately 50% of wave power is dissipated with respect to incident wave power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call