Abstract

AbstractDuring the late stages of stellar evolution in massive stars (carbon fusion and later), the fusion and neutrino luminosities in the core of the star exceed the Eddington luminosity. This can drive vigorous convective motions which in turn excite a super-Eddington flux in internal gravity waves. We show that an interesting fraction of the energy in excited gravity waves can, in some cases, convert into sound waves as the gravity waves propagate (tunnel) towards the stellar surface. The subsequent dissipation of the sound waves can unbind up to several M⊙ of the stellar envelope. This wave-driven mass loss can explain the existence of extremely large stellar mass loss rates just prior to core-collapse, which are inferred via circumstellar interaction in some core-collapse supernovae (e.g., SNe 2006gy and PTF 09uj).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call