Abstract

Spherical tokamaks, with their relatively low toroidal field, extend fast-ion-driven instability physics to parameter ranges not normally accessed in conventional tokamaks. The low field means that both the fast-ion Larmor radius normalized to the plasma minor radius and the ratio of the fast-ion velocity to the Alfven speed are relatively large. The large Larmor radius of the ions enhances their interaction with instability modes, influencing the structure of the unstable mode spectrum. The relatively large fast-ion velocity allows for a larger population of fast ions to be in resonance with the mode, increasing the drive. It is therefore an important goal of the present proof-of-principle spherical tokamaks to evaluate the role of fast-ion-driven instabilities in fast-ion confinement. This paper presents the first observations of fast-ion losses resulting from toroidal Alfven eigenmodes and a new, fishbone-like, energetic particle mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.