Abstract
The influence from a current on wave drift forces and resulting slowly varying vessel responses can be quite significant. In this paper the effect is reviewed and further investigated. Several works have been published on this complex topic during the last 20–25 years, while it is only to a little extent taken consistently into account in standard industry tools. Simplified methods are often used, if any, and /or empirical correction from model test data. Thus there is a need to improve standard tools in this respect. The effects on slowly varying vessel motions and resulting extreme mooring line loads are demonstrated through time series sequences from selected, previous model tests with FPSO’s and semisubmersibles in steep irregular waves. Wave-current interaction effects that can be larger than the effects from current and wind alone are identified. It is also confirmed from these examples that extreme mooring forces usually occur due to extreme slow-drift motions. An overview description is given of a new, general numerical potential theory code for industry use, MULDIF-2, where wave-current-structure interaction is consistently included as a basic element in the formulation. Main items in the approach are addressed and referred to previous works in the literature. Results from an initial comparison against previous results on drift forces on a vertical column are given, and a good agreement is found. Further verification and validation work is in progress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.