Abstract

Lift–dominated pointed aircraft configurations are considered in the transonic range. To make the approximations more transparent, two–dimensionally cambered untwisted lifting wings of zero thickness with aspect ratio of order one are treated. An inner expansion, which starts as Jones's theory, is matched to a nonlinear outer transonic theory as in Cheng and Barnwell's earlier work. To clarify issues, minimize ad hoc assumptions existing in earlier studies, as well as provide a systematic expansion scheme, a deductive rather than inductive approach is used with the aid of intermediate limits and matching not documented for this problem in previous literature. High–order intermediate–limit overlap–domain representations of inner and outer expansions are derived and used to determine unknown gauge functions, coordinate scaling and other elements of the expansions. The special role of switchback terms is also described. Non–uniformities of the inner approximation associated with leading–edge singularities similar to that in incompressible thin airfoil theory are qualitatively discussed in connection with separation bubbles in a full Navier–Stokes context and interaction of boundary–layer separation and transition. Non–uniformities at the trailing edge are also discussed as well as the important role of the Kutta condition. A new expression for the dominant approximation of the wave drag due to lift is derived. The main result is that although wave drag due to lift integral has the same form as that due to thickness, the source strength of the equivalent body depends on streamwise derivatives of the lift up to a streamwise station rather than the streamwise derivative of cross–sectional area. Some examples of numerical calculations and optimization studies for different configurations are given that provide new insight on how to carry the lift with planform shaping (as one option), so that wave drag can be minimized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.