Abstract

Wave damping in vegetation in shallow lakes reduces resuspension and thereby improves the light climate and decreases nutrient recycling. In this study, wave transformation in reed (Phragmites australis) was measured in a shallow lake. Theoretical models of wave height decay, based on linear wave theory, and transformation of the probability density function (PDF), using a wave-by-wave approach, were developed and compared to the collected data. Field data showed an average decrease in wave height of 4–5% m/sup -1sup/ within the first 5–14 m of the vegetation. Incident root-mean-square wave height was 1–8 cm. A species-specific drag coefficient CD was found to be about 9 (most probable range: 3–25). CD showed little correlation with a Reynolds number or a Keulegan-Carpenter number. The PDF for the wave heights did not change significantly, but for longer distances into the vegetation and higher waves it tended to be more similar to the developed transformed distribution than to a Rayleigh distribution. Relationships developed in this study can be employed for management purposes to reduce resuspension and erosion. (Less)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.