Abstract
Abstract The energy, momentum, and mass-flux exchanges between surface waves and underlying Eulerian mean flows are considered, and terms in addition to the classical wave “radiation stress” are identified. The formulation is made in terms of the vertically integrated flow. The various terms are identified with other analyses and interpreted in terms of physical mechanisms, permitting reasonable estimates of the associated depth dependencies. One term is identified with the integrated “CL vortex force” implemented, for example, in simulations of Langmuir circulation. However, as illustrated with a simple example of steady refraction across a shear zone, other terms of the same order can significantly alter the results. The classic example of long waves forced by short-wave groups is also revisited. In this case, an apparent singularity arising in shallow water is countered by finite-amplitude dispersion corrections, these being formally of the same order as the forced long-wave response, and becoming significant or dominant as shallow water is approached.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.