Abstract

The wave climate of the Apostle Islands in Lake Superior for 35 year (1979–2013) was hindcast and examined using a third-generation spectral wave model. Wave measurements within the Apostle Islands and offshore NOAA buoys were used to validate the model. Statistics of the significant wave height, peak wave period, and mean wave direction were computed to reveal the spatial variability of wave properties within the archipelago for average and extreme events. Extreme value analysis was performed to estimate the significant wave height at the 1, 10, and 100 year return periods. Significant wave heights in the interior areas of the islands vary spatially but are approximately half those immediately offshore of the islands. Due to reduced winter ice cover and a clockwise shift in wind direction over the hindcast period, long-term trend analysis indicates an increasing trend of significant wave heights statistics by as much as 2% per year, which is approximately an order of magnitude greater than similar analysis performed in the global ocean for areas unaffected by ice. Two scientific questions related to wave climate are addressed. First, the wave climate change due to the relative role of changing wind fields or ice covers over the past 35 years was revealed. Second, potential bluff erosion affected by the change of wave climate and the trend of lower water levels in the Apostle Islands, Lake Superior was examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call