Abstract

Abstract This paper describes wave climate and variability in the Gulf of Mexico based on a 30-yr wave hindcast. The North American Regional Reanalysis wind fields are employed to drive a third-generation spectral wave model with high spatial (0.005°–0.06°) and temporal (3 hourly) resolution from 1979 through 2008. The wave hindcast information is validated using National Data Buoy Center (NDBC) data and altimeter wave information (GlobWave). The model performance is satisfactory (r2 ~ 0.90) in the Gulf of Mexico and to a lesser extent in the Caribbean Sea (r2 ~ 0.87) where only locally generated waves are considered. However, the waves generated by the Caribbean low-level jet (CLLJ) are discussed in this work. Subsequently, the yearly/monthly mean and extreme wave climates are characterized based on the (30 yr) wave hindcast information. The model results show that the mean wave climate is mainly modulated by winter cold fronts (nortes) in the Gulf of Mexico, whereas extreme wave climate is modulated by both hurricane and norte. Extreme wave heights in the Gulf of Mexico have increased at a rate of 0.07–0.08 m yr−1 in September/October because of increased cyclone intensity in the last decade. However, there is no significant trend when considering the annual statistics for extreme events. Furthermore, modeling results also suggest that the CLLJ modulates the mean wave climate in the Caribbean Sea and controls the rate of mean wave height increase (0.03 m yr−1) in the Caribbean. However, these later results need to be corroborated by extending the computational domain in order to include the swell coming from the Atlantic Ocean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call