Abstract

For a complete understanding of a wave energy conversion device, it is important to know how the proposed device moves in the water, how this motion can be measured, and to what extent the motion can be predicted or simulated. The magnitude and character of the motion has impacts on engineering issues and optimization of control parameters, as well as the theoretical understanding of the system. This paper presents real sea measurements of buoy motion and translator motion for a wave energy system using a linear generator. Buoy motion has been measured using two different systems: a land-based optical system and a buoy-based accelerometer system. The data have been compared to simulations from a Simulink model for the entire system. The two real sea measurements of buoy motion have been found to correlate well in the vertical direction, where the measured range of motion and the standard deviation of the position distributions differed with 3 and 4 cm, respectively. The difference in the horizontal direction is more substantial. The main reason for this is that the buoy rotation about its axis of symmetry was not measured. However, used together the two systems give a good understanding of buoy motion. In a first comparison, the simulations show good agreement with the measured motion for both translator and buoy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.