Abstract

Compression of digital holograms is a major challenge that needs to be resolved to enable the efficient storage, transmission and rendering of macroscopic holographic signals. In this work, we propose to deploy the wave atom transform that has been utilized before for interferometric modalities such as acoustic and seismic signals. This non-adaptive multiresolution transform has good space-frequency localization and its orthonormal basis is suitable for sparsifying holographic signals. By replacing the CDF 9/7 wavelet transform stage in a JPEG 2000 codec with the proposed wave atom transform, we did assess its suitability for coding complex amplitude wavefronts. Experimental results demonstrate improved rate-distortion performance with respect to JPEG 2000 and H.265/HEVC for a set of computer-generated, diffuse, macroscopic holograms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.