Abstract

In this paper we define Maxwell's equations in the setting of the intrinsic complex of differential forms in Carnot groups introduced by M. Rumin. It turns out that these equations are higher-order equations in the horizontal derivatives. In addition, when looking for a vector potential, we have to deal with a new class of higher-order evolution equations that replace usual wave equations of the Euclidean setting and that are no more hyperbolic. We prove equivalence of these equations with the "geometric equations" defined in the intrinsic complex, as well as existence and properties of solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.