Abstract

Clearance is inevitable in the deployable mechanisms due primarily to the kinematic function requirements. This phenomenon affects the dynamic performances of deployed structures negatively. In this paper, the wave analysis of dynamic characteristics of planar structures with revolute clearance joints is developed by spectral element method. First, the spectral element model of revolute clearance joints is established. The radial and tangential springs and damping coefficients of revolute clearance joints are evaluated based on the contact model of elastic foundation. Then, the wave equations of two beams connected by a revolute clearance joint are derived, and extended to the case of multiple beams connected by revolute clearance joints. Finally, the dynamic response is analyzed for planar structures with single revolute clearance joint and multiple revolute clearance joints under the impact load. The wave propagation rules in planar structures with revolute clearance joints are revealed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call