Abstract

In offshore offloading operations, two vessels in a side-by-side configuration experience actions of both ambient water waves and liquid sloshing in internal tanks. Under the excitation of water waves, complex multibody motions are induced, resulting in liquid sloshing in tanks, and concurrently liquid sloshing can feedback to affect the vessels’ motions. The interaction between waves and two barges in a side-by-side configuration coupled with liquid sloshing effects is investigated for a fixed–free arrangement. A numerical model is developed based on the boundary element method to deal with complex wave induced multibody motions coupled with liquid sloshing in internal tanks. Due to the presence of a narrow gap between two vessels, gap resonance may occur, and a damping surface is introduced to suppress an unrealistic response near resonance. Concurrently, physical experiments with and without liquid sloshing effects are carried out. In-depth discussions on motion characteristics are given, and Stokes and non-Stokes natural frequencies associated with liquid sloshing are discussed. The significance of the present study is twofold. Firstly, the experimental measurements provide reference results for validations of numerical simulations. Secondly, this work gives an insight into wave induced motions with liquid sloshing effects under different wave headings which affect vessel operational safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call