Abstract

We report a compact source of high power, tunable, ultrafast yellow radiation using fourth-harmonic generation of a mid-IR laser in two-stage frequency-doubling processes. Using Cr2+:ZnS laser at 2360 nm frequency-doubled in a multi-grating MgO:PPLN crystal, we have generated near-IR radiation tunable across 1137-1200 nm with average output power as high as 2.4 W and pulse width of ∼60fs. Subsequently, the near-IR radiation is frequency-doubled using a bismuth triborate (BIBO) crystal to produce coherent yellow radiation tunable across 570-596 nm with a maximum average power of ∼1W. The source has a maximum mid-IR to yellow (near-IR to yellow) single-pass conversion efficiency as high as ∼29.4% (∼47%). Without any pulse compression, the yellow source has output pulses at a repetition rate of 80 MHz with a pulse width of ∼130fs in Gaussian-shaped and a spectral width of ∼4nm corresponding to a time-bandwidth product of 0.45. The generated output beam has a Gaussian transverse beam profile with measured M2 values of Mx2∼1.07 andMy2∼1.01.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call