Abstract
Solar desalination is one of the most promising technologies to address global freshwater shortages. However, traditional evaporators encounter the bottleneck of reduced evaporation rate or even failure due to salt accumulation in high-salinity water. Inspired by ancient waterwheels, we have developed an adaptively rotating evaporator that enables long-term and efficient solar desalination in brines of any concentration. The evaporator is a sulphide-loaded drum-type biochar. Our experiments and numerical simulations show that this evaporator, thanks to its low density and unique hydrophilic property, rotates periodically under the center-of-gravity shift generated by salt accumulation, achieving self-removal of salt. This allows it to maintain a high evaporation rate of 2.80 kg m−2 h−1 within 24 h even in saturated brine (26.47%), which was not achieved previously. This proof-of-concept work therefore demonstrates a concentration- and time-independent, self-rotation-induced solar evaporator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.