Abstract

The possible occurrence of species diversity in mechanisms underlying leaf-growth inhibition by water stress, was investigated in related cereal plants. Water stress was generated by additions of the osmoticum polyethylene glycol 6000 to the root medium. Effects of external water potentials ranging from 0 to -0.6 MPa, on early growth parameters of emerging leaves were measured under controlled environment conditions, using pairs of maize, barley or rice genotypes with differing resistance to water stress under field conditions. Water potentials of -0.4 MPa for 24 h, similarly reduced leaf growth, comparative production rates of leaf epidermal cells and cell size in all genotypes. These reductions did not appear to be caused by reductions in the osmotic potential gradients between the expanding leaf cells and their external water source. However, growth inhibition in maize and barley, was accompanied by significant reductions in comparative leaf and cell wall extensibility. Moreover, regression plots revealed good linear correlations (r=0.83 ** for maize and r=0.77 ** for barley) between the reductions in leaf growth induced by a series of water potentials and associated reductions in leaf extensibility. In contrast, the reduction in growth of rice leaves, was not accompanied by any significant changes in leaf or cell wall extensibility. Similarly, regression plots revealed poor correlations between leaf growth and leaf extensibility in both paddy and upland rice (r=0.17 and r=0.07, respectively). Thus, despite numerous inter-species similarities, biophysical changes associated with stress-induced leaf growth inhibition in maize and barley, differed from those in rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call