Abstract

Stable ozonolysis products of C60 solutions in CCl4, toluene, and hexane were studied by elemental analysis, HPLC, and UV and IR spectroscopy. Polyketones and esters were established for the first time to be the main stable products, whose content increased during the whole ozonolysis time (1 h). Epoxides C60On (n = 1—6) are accumulated within 1—3 min, and after 5 min of ozonolysis their concentration decreases to zero. Fullerene C60 disappears from the reaction solution due to its conversion to oxides and mechanical capturing of C60 by these oxides to form a precipitate. The oxidation of C60 is completed in the solid phase by the formation of the C60O16 oxide in which 9.68 O atoms fall on fullerene polyketones, 6 O atoms are attributed to esters, and 0.32 O atoms fall per epoxides. The optimum medium for preparation of the C60 oxides is CCl4 rather than traditional toluene, which reacts with ozone in the side reaction to form products containing active oxygen. The C60 cage is raptured during ozonolysis because of the C=C bond cleavage to form two C=O groups at the ends of the open hexagon. Ozonolysis of C60 solutions in CCl4 is efficient for synthesis of water-soluble fullerene oxides due to the high yield and solubility of polyketones and esters in water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.