Abstract

Separation and characterization of wear debris from ferrograph images are demanded for on-line analysis. However, particle overlapping issue associated with wear debris chains has markedly limited this technique due to the difficulty in effectively segmenting individual particles from the chains. To solve this bottleneck problem, studies were conducted in this paper to establish a practical method for wear debris separation for on-line analysis. Two conventional watershed approaches were attempted. Accordingly, distance-based transformation had a problem with oversegmentation, which led to overcounting of wear debris. Another method, by integrating the ultimate corrosion and condition expansion (UCCE), introduced boundary-offset errors that unavoidably affected the boundary identification between particles, while varying the corrosion scales and adopting a low-pass filtering method improved the UCCE with satisfactory results. Finally, together with a termination criterion, an automatic identification process was applied with real on-line wear debris images sampled from a mineral scraper gearbox. With the satisfactory separation result, several parameters for characterization were extracted and some statistics were constructed to obtain an overall evaluation of existing particles. The proposed method shows a promising prospect in on-line wear monitoring with deep insight into wear mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.