Abstract

Wearable sensors with water resistance and mechanical durability are of great value in dealing with long‐term movement and remote control in harsh environments. However, achieving high sensitivity with long‐term stability and real‐time remote control in a watery environment is still a challenge. Herein, the waterproof wearable sensors with good mechanical robustness composed of laser‐induced graphene and in situ‐coated protective silicone layers are reported. By being integrated with high‐capacitance ion‐gel dielectrics, the conformal sensors can detect multiple stimuli, including strain, temperature, and pressure. The long‐term water resistance of strain sensors is evaluated by continuously monitoring the resistance in underwater, sweat, and saline environment for up to 5.5 h. Underwater wireless remote control of a robotic hand is further demonstrated by mounting five sensor arrays. Moreover, different finger gestures are well recognized, making these sensor devices promising candidates for versatile waterproof wearable electronics and robotics technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call