Abstract

In the current investigation, watermelon rinds (WMR) have been utilized as an eco-friendly and cost-efficient adsorbent for acridine orange (AO) from contaminated water samples. Adsorption of AO onto raw (RWM) and thermally treated rinds (TTWM250 and TTWM500) has been studied. The adsorption efficiency of the three adsorbents was evaluated by measuring the % removal (%R) of AO and the adsorption capacity (qe, mg/g). Dependent variables (%R and qe) were optimized as a function of four factors: pH, sorbent dosage (AD), the concentration of AO (DC), and contact time (ST). Box–Behnken (BB) design has been utilized to obtain the optimum adsorption conditions. Prepared adsorbents have been characterized using scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR), and Raman spectroscopies. The surface area of RWM, TTWM250, and TTWM500, as per the Brunauer-Emmett-Teller (BET) analysis, was 2.66, 2.93, and 5.03 m2/g, respectively. Equilibrium investigations suggest that Freundlich model was perfectly fit for adsorption of AO onto TTWM500. Maximum adsorption capacity (qmax) of 69.44 mg/g was obtained using the Langmuir equation. Adsorption kinetics could be best described by the pseudo-second-order (PSO) model. The multi-cycle sorption-desorption study showed that TTWM500 could be regenerated with the adsorption efficiency being preserved up to 87% after six cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.