Abstract

The shuttle effect limits the practical application of lithium-sulfur (Li-S) batteries with high specific capacity and cheap price. Herein, a three-dimensional carbon substrate containing Ni3 S2 nanoparticles is created to modify the separator. The in situ optical visualization battery proves that the material can realize the rapid conversion of Li2 S6 . Moreover, the impact of lithium-ion diffusion on the reactions in the cell is investigated, and the mechanism of Ni3 S2 @C in the cell is proposed based on the "adsorption-diffusion-conversion" mechanism. The "adsorption-diffusion-conversion" process of polysulfide is carried out on the surface of the composite separator, showing positive effects on the inhibition of polysulfide shuttle and the promotion of conversion. The separator is modified to improve sulfur utilization and reduce dead sulfur accumulation through a strategy of chemical immobilization and physical blocking. This helps to bridge the existing gaps of Li-S batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.