Abstract

This review summarises reported observations of the effects of waterlogging on agricultural production in Australia and briefly discusses potential remediation strategies. Inconsistencies are demonstrated in the current indicators used for assessment of waterlogging potential across agricultural landscapes as well as in parameters measured in waterlogging studies. It is suggested that predictions of waterlogging potential for landscapes should be based on a minimum dataset that includes pedological, topographical, and climate data for the defined area, as well as observations of plant morphological appearance and visible surface water. The review also summarises the effects of low oxygen concentration in soil on rhizosphere processes, and discusses evidence for direct effects on plant physiology of reductions in soil oxygen caused by waterlogging. Finally, the review describes current crop growth, water use, and yield simulation models used in Australia (SWAGMAN, DRAINMOD, and APSIM) that incorporate waterlogging stress. It is suggested that there is scope for modifications to these models based on recent improved understanding of plant physiological responses to waterlogging and on further research. The review concludes that improvements in modelling waterlogging outcomes to assist growth and yield predictions should ultimately enhance management capacity for growers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call