Abstract

Drainage difficulties in the waterlogged areas of sloping cropland not only impede crop development but also facilitate the formation of erosion gullies, resulting in significant soil and water loss. Investigating the distribution of these waterlogged areas is crucial for comprehending the erosion patterns of sloping cropland and preserving black soil resource. In this study, we built varied models based on two stages (one using only deep learning methods and the other combining object-based image analysis (OBIA) with deep learning methods) to identify waterlogged areas using high-resolution remote sensing data. The results showed that the five deep learning models using original remote sensing imagery achieved precision rates varying from 54.6% to 60.9%. Among these models, the DeepLabV3+-Xception model achieved the highest accuracy, as indicated by an F1-score of 53.4%. The identified imagery demonstrated a significant distinction in the two categories of waterlogged areas: sloping cropland erosion zones and erosion risk areas. The former had obvious borders and fewer misclassifications, exceeding the latter in terms of identification accuracy. Furthermore, the accuracy of the deep learning models was significantly improved when combined with object-oriented image analysis. The DeepLabV3+-MobileNetV2 model achieved the maximum accuracy, with an F1-score of 59%, which was 6% higher than that of the model using only original imagery. Moreover, this advancement mitigated issues related to boundary blurriness and image noise in the identification process. These results will provide scientific assistance in managing and reducing the impact in these places.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.