Abstract
Chlorogenic acid (CA) is a natural compound used as an antioxidant in the preparation of food, drugs, and cosmetics. Due to their low stability and bioavailability, many researchers have studied the encapsulation of CA in various delivery colloidal systems. The aim of this study was to evaluate the stability of water-in-oil-in-water (W/O/W) double emulsions loaded with CA and its antioxidant capacity. For this purpose, CA-W/O/W double emulsions were prepared using Span 80 and lecithin as lipophilic emulsifiers, and Tween 20 as a hydrophilic emulsifier. The influence of nature of lipophilic emulsifiers, the presence of chitosan (CH) in the internal and external aqueous phases, pH, temperature and the storage time of W/O/W double emulsions were also investigated. Depending on the preparation conditions, the W/O/W double emulsions showed the droplet size in the range 9.13 ± 0.55 μm–38.21 ± 1.87 μm, the creaming index 34%–78% and the efficiency encapsulation 79.45 ± 1.5%–88.13 ± 1.9%. Zeta potential values were negative for the W/O/W double emulsion without CH (−36.8 ± 2.02mV; −27.3 ± 1.75mV) and positive for the W/O/W double emulsions with CH in the external aqueous phase (+6.5 ± 0.42mV; 28.6 ± 0.92mV). The study of the release of CA from W/O/W double emulsions has highlighted two mechanisms: one based on the coalescence between the water inner droplets or between the oil globules as well as a diffusion releasing mechanism. The oxidative stability parameters of the W/O/W double emulsions, such as the peroxide value (POV) and the conjugated diene content (CD) were measured.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.