Abstract

The synthesis and resulting temperature-responsive properties of semicrystalline waterborne pressure-sensitive adhesives (PSAs) were investigated. A crystalline polymer fraction was produced in situ within waterborne particles by miniemulsion polymerization of non-branched long chain acrylates. The degree of crystallinity was controlled by copolymerization with a short chain acrylate. The polymerization strategy determined the polymer architecture and film structure, which then influenced the adhesion properties. The high sensitivity of the adhesion strength of these PSAs to temperature, in the range around the crystal melting point, opens up the possibility of designing temperature-responsive adhesives. With the right distribution and concentration of crystalline polymers, a simultaneous increase in both the peel strength and the shear resistance was obtained, which is a combination that is often not found when optimizing adhesive properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.