Abstract
AbstractA new experimental approach for preparing biobased, water‐soluble polyesters (PEs) via titanium(IV) n‐butoxide‐catalyzed bulk polycondensation is presented. In the described method polymers were obtained from isosorbide, maleic anhydride and poly(ethylene glycol) (PEG). The chemical structure of the synthesized PEs was confirmed using 2D NMR spectroscopy and by titration methods. Careful analysis of 2D NMR spectra viz. correlation spectra (COSY), heteronuclear single quantum correlation spectra (HSQC) and heteronuclear multiple‐bond correlation spectra (HMBC) allowed to accomplish the complete proton assignment of isosorbide, PEG, and unsaturated acid residues in the PEs. Moreover, by using NMR spectroscopy the transformation of maleic anhydride into fumaric acid ester and the absence of maleic acid ester units in the final polymer were proven. However, during polycondensation part of the unsaturated bonds has reacted in a Michael addition with isosorbide or PEG. Gel permeation chromatography measurements revealed that the unsaturated PEs have Mn values in the range 3000–5000 g/mol. These PEs, with a low content of carboxylic acid end groups, exhibited sufficient thermal resistance for practical applications, for example, as free radical curable coatings. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.