Abstract

Highly stable, water-based barium titanate (BaTiO3) sols were developed by a low cost and straightforward sol–gel process. Nanocrystalline barium titanate thin films and powders with various Ba:Ti atomic ratios were produced from the aqueous sols. The prepared sols had a narrow particle size distribution in the range 21–23 nm and they were stable over 5 months. X-ray diffraction pattern revealed that powders contained mixture of hexagonal- or perovskite-BaTiO3 as well as a trace of Ba2Ti13O22 and Ba4Ti2O27 phases, depending on annealing temperature and Ba:Ti atomic ratio. Highly pure barium titanate with cubic perovskite structure achieved with Ba:Ti = 50:50 atomic ratio at the high temperature of 800 °C, whereas pure barium titanate with hexagonal structure obtained for the same atomic ratio at the low temperature of 500 °C. Transmission electron microscope revealed that the crystallite size of both hexagonal- and perovskite-BaTiO3 phases reduced with increasing the Ba:Ti atomic ratio, being in the range 2–3 nm. Scanning electron microscope analysis revealed that the average grain size of barium titanate thin films decreased with an increase in the Ba:Ti atomic ratio, being in the range 28–35 nm. Moreover, based on atomic force microscope images, BaTiO3 thin films had a columnar-like morphology with high roughness. One of the highest specific surface area reported in the literature was obtained for annealed powders at 550 °C in the range 257–353 m2g−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call