Abstract

AbstractBased on the methods of variable separation and matching eigenfunction expansions for velocity potential, analytical solutions are developed for a water wave radiation problem by a submerged vertical cylinder in finite water depth. They are validated by comparison with results from the higher order boundary element method and convergent examinations on the number of expansion models. Numerical analysis is carried out to investigate the influence submerged depth, cylinder length, and water depth on added mass and radiation damping. When the submerged depth is large, the added mass approaches a stable value, and radiation damping tends to zero. At high frequency range, the heave and pitch of the added mass of the submerged cylinder is about twice that of the floating cylinder. The influence of cylinder length for hydrodynamic coefficients is quite complex and shows the various properties at different frequency ranges. Added mass can be increased with the decrease of water depth, whereas the effect o...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.