Abstract

Water vapour diffusion through textile fabrics plays a crucial role in maintaining body comfort. Developing and producing comfortable textiles is a major challenge for manufacturers of fibres, yarns and fabrics. This study aims to develop a simple model to predict the water vapour permeability of textile fabrics as a function of their structural parameters to assist manufacturers in developing comfortable fabrics. To achieve this goal, geometric modeling of the woven structure was proposed to calculate porosity at the micro-and macro-pores level. Two mathematical models were introduced based on the principle of diffusion of water vapour through a textile fabric. To validate the two models, a series of 18 samples was prepared with three basic fabric structures: Plain, Twill and Turc Sateen. To vary the compactness of the structures, three weft densities were chosen: 18, 21 and 24 picks/cm. In addition, since the material influences water vapour diffusion, two types of weft yarns were inserted: 50% CO/50% PET and 100% PET. The results show that the two models are reliable for predicting water vapour resistance (Ret) depending on the structural parameters of the textile fabric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call