Abstract

Abstract. The local distribution of water vapour in the urban area of Rome has been studied using both a high resolution mesoscale model (MM5) and Earth Remote Sensing-1 (ERS-1) satellite radar data. Interferometric Synthetic Aperture Radar (InSAR) techniques, after the removal of all other geometric effects, estimate excess path length variation between two different SAR acquisitions (Atmospheric Phase Screen: APS). APS are strictly related to the variations of the water vapour content along the radar line of sight. To the aim of assessing the MM5 ability to reproduce the gross features of the Integrated Water Vapour (IWV) spatial distribution, as a first step ECMWF IWV has been used as benchmark against which the high resolution MM5 model and InSAR APS maps have been compared. As a following step, the high resolution IWV MM5 maps have been compared with both InSAR and surface meteorological data. The results show that the high resolution IWV model maps compare well with the InSAR ones. Support to this finding is obtained by semivariogram analysis that clearly shows good agreement beside from a model bias.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.