Abstract

We report water vapor sorption studies on four primitive cubic, pcu, pillared square grid materials: SIFSIX-1-Cu, SIFSIX-2-Cu-i, SIFSIX-3-Ni, and SIFSIX-14-Cu-i. SIFSIX-1-Cu, SIFSIX-3-Ni, and SIFSIX-14-Cu-i were observed to exhibit negative water vapor adsorption at ca. 40-50% relative humidity (RH). The negative adsorption is attributed to a water-induced phase transformation from a porous pcu topology to nonporous sql and sql-c* topologies. Whereas the phase transformation of SIFSIX-1-Cu was found to be irreversible, SIFSIX-3-Ni could be regenerated by heating and can therefore be recycled. In contrast, SIFSIX-2-Cu-i, which is isostructural with SIFSIX-14-Cu-i, exhibited a type V isotherm and no phase change. SIFSIX-2-Cu-i was observed to retain both structure and gas sorption properties after prolonged exposure to heat and humidity. The hydrolytic stability of SIFSIX-2-Cu-i in comparison to its structural counterparts is attributed to structural features and therefore offers insight into the design of hydrolytically stable porous materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call