Abstract

The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59–12.79 μm) channel imagery, where the traditional cloud motion wind technique fails. A new tracer selection procedure, which we call the temporal difference technique, is demonstrated in this paper. This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature (T B) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions. The T B difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model. The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions: tropical, midlatitude summer, U.S. standard, and midlatitude winter. The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the T B “wind”. This technique is valid over cloud-free ocean areas. The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD), speed bias (BIAS), mean vector difference (MVD), standard deviation (SD), and root-mean-square error (RMSE), when compared with the wind field of NCEP reanalysis data and rawinsonde observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.