Abstract
The development of efficient zeolite-based adsorbents with high water uptake capacity is an essential requirement for water adsorption and moisture removal technologies. In the present study, zeolite-Y samples with interconnected hierarchical micro-mesoporous network were synthesized by employing a bifunctional cationic polymer (namely, polydiallydimethyl-ammonium chloride, PDDA), and ion-exchanged with several metal salts (such as Zn, Mg, Li) targeting high capacity water adsorption. We systematically investigated water adsorption behavior of hierarchically porous NaY (HP–NaY) samples and studied the influence of their distinct metal exchange analogues on water affinity and total adsorption capacity. The water affinity and water uptake increased for the HP-NaY samples compared to conventional NaY. HP-NaY samples demonstrating a high water adsorption capacity (17.32–17.98 mmol/g) at 303 K and 0.7 relative pressure (P/Po) when compared to commercial zeolite-Y (CBV-400, 14.83 mmol/g). A further improvement in water uptake was attained by introduction of distinct metal ions into the hierarchical porous zeolite-Y. HP-LiY exhibited the highest water adsorption capacity (19.08 mmol/g at 0.7 P/Po) amounting to 28% and 15% improvement when compared to CBV-400 and CBV-Li respectively. The observed improvements in water adsorption capacity are attributed to (i) the existence of interconnected micro-mesoporous channel network and higher total pore volume and (ii) the enhancement in accessibility of adsorption sites by H2O molecules. The adsorption data of the samples were also fitted using various adsorption models. Hierarchically porous zeolites displayed site heterogeneity, the latter being rendered by the existence of varying chemical environments between sites within the micropores and the mesopores and the nature of the host metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.