Abstract

AbstractThe objective of this work was to characterize the moisture sorption and water vapor permeation behavior of edible films made from sodium caseinate and chitosan for future applications as protective layers on foods. Glycerol was used as a plasticizer, and the films were obtained by a casting/solvent‐evaporation method. The moisture sorption kinetics and water vapor permeability (WVP) were investigated. The effect of the addition of glycerol on the WVP characteristics of the films was determined at 25°C with a relative humidity (RH) gradient of 0–64.5% (internal to external). Experimental data were fitted with an exponential function with two fitting parameters. WVP increased with increasing glycerol content in both films, chitosan samples being much more permeable than caseinate ones at any glycerol content. WVPs of sodium caseinate, chitosan, and chitosan/caseinate films with 28 wt % glycerol were also determined for two RH gradients, 0 to 64.5% and 100 to 64.5%, higher WVPs being measured at higher RHs. The moisture sorption kinetics of caseinate films prepared with various glycerol contents were determined by the placement of the films in environments conditioned at 20°C and 75% RH. Peleg's equation and Fick's second law were used to predict the moisture sorption behavior over the entire time period. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.