Abstract

We used stable isotope techniques to investigate water utilization of two native trees, Sabina vulgaris Ant. and Artemisia ordosica Krasch., and one introduced tree, Salix matsudana Koidz., in the semiarid Mu-Us desert, Inner Mongolia, China. The study site was in a region where there has been a decline in agricultural productivity, caused by severe desertification over the past several decades. S. matsudana is used extensively for reforestation to protect farms and cultivated lands from shifting sand dunes. We identified water sources for each tree species by comparing the stable isotopes δD and δ18O in water in stems, soil, and groundwater. We also measured δ13C levels in leaves to evaluate the intrinsic water-use efficiency (WUE) of each plant. Comparison of isotopes showed that S. vulgaris and S. matsudana consume relatively deep soil water as well as groundwater, whereas A. ordosica uses only shallow soil water. The δ13C measurements indicated that S. vulgaris has exclusively high WUE, whereas that of the other species was typical of temperate-region C3 plants. The water source data plus WUE data suggest that planted S. matsudana uses groundwater freely, whereas native plants conserve water. Thus, reforestation with S. matsudana might cause irreversible groundwater shortages. Corresponding Editor: E. A. Holland.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call