Abstract

In turf industry, the ability of a cultivar to use less water is an important consideration, especially where rainfall and irrigation water are insufficient. Knowledge of turf grass water-use patterns is therefore important for developing efficient water management practices and also for selection of drought-resistant cultivars. We evaluated the soil water‐use patterns of tall fescue and hybrid bluegrasses cultivars irrigated at different rates. Field experiments were conducted at the Turfgrass Research Facility, Auburn University, AL, in 2005 and 2006. Two tall fescue (Festuca arundinacea Schreb.) cultivars (‘Kentucky 31’ and ‘Green Keeper’) and four hybrid bluegrass (Poa pratensis L. × Poa arachnifera Torr.) cultivars, viz., HB 129 [‘Thermal Blue’], HB 130 (Experimental line), HB 328 (Experimental line) and HB 329 [‘Dura Blue’] were included in this study. Plots were irrigated based on the potential evapotranspiration, viz., 100% ET, 80% ET and 60% ET replacements. Tensiometers were installed at 0.075, 0.15 and 0.30 m depths, and their readings used to calculate the matric head, water content and water-use values. Turf color quality was determined from turf canopy digital images. Analysis of variance (ANOVA) for a random complete block design (RCBD) was conducted for available water, water-use and turf color quality values. Hybrid bluegrasses revealed significantly (P = 0.05) higher turf color indices compared to the tall fescue cultivars, but there was no indication of differential responses to irrigation among cultivars. Based on water-use data, hybrid bluegrass cultivars revealed significantly (P = 0.05) lower water-use compared to tall fescue cultivars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call