Abstract
Carbon (C) and water cycles of terrestrial ecosystems are two coupled ecological processes controlled partly by stomatal behavior. Water-use efficiency (WUE) reflects the coupling relationship to some extent. At stand and ecosystem levels, the variability of WUE results from the trade-off between water loss and C gain in the process of plant photosynthetic C assimilation. Continuous observations of C, water, and energy fluxes were made at three selected forest sites of ChinaFLUX with eddy covariance systems from 2003 to 2005. WUE at different temporal scales were defined and calculated with different C and water flux components. Variations in WUE were found among three sites. Average annual WUE was 9.43 mg CO(2) g(-1) H(2)O at Changbaishan temperate broad-leaved Korean pine mixed forest, 9.27 mg CO(2) g(-1) H(2)O at Qianyanzhou subtropical coniferous plantation, and 6.90 mg CO(2) g(-1) H(2)O at Dinghushan subtropical evergreen broad-leaved forest. It was also found that temperate and subtropical forest ecosystems had different relationships between gross primary productivity (GPP) and evapotranspiration (ET). Variations in WUE indicated the difference in the coupling between C and water cycles. The asynchronous response of GPP and ET to climatic variables determined the coupling and decoupling between C and water cycles for the two regional forest ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.