Abstract

Water treatment sludge was successfully thermally converted to obtain biochar as a stable material with resource potential. This research explored the application of sludge biochar as a supplementary cementitious material. The cement paste samples incorporating different amounts of sludge biochar were prepared, hardened, and analyzed for performance. The results show an improvement in hydration kinetics and mechanical properties of cement paste incorporating biochar, compared to raw sewage sludge. The mineralogical, thermal and microscopic analyses show evidence of pozzolanic activity of the biochar. The samples with 2% and 5% biochar showed higher heat release than the reference material. Specimens with 1%, 2% and 5% biochar showed a slightly higher compressive strength at 28 days compared to the reference material. Sludge conversion to biochar will incur an estimated cost of US$398.23/ton, which is likely to be offset by the substantial benefits from avoiding landfill and saving valuable cementitious materials. Therefore, this research has demonstrated that through conversion to biochar, water treatment sludge can be promoted as a sustainable and alternative cementitious material for cement with minimum environmental impacts, hence contributing to circular economy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.