Abstract

In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications, including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reduction has been attracting scholars’ attentions. Here, it was determined that the delicate microstructures on the scales of the fish Ctenopharyngodon idellu s exhibit remarkable drag-reduction effect. In addition, the underlying drag-reduction mechanism was carefully investigated. First, exceptional morphologies and structures of the scales were observed and measured using a scanning electron microscope and 3-dimensional (3D) microscope. Then, based on the acquired data, optimized 3D models were created. Next, the mechanism of the water-trapping effect of these structures was analyzed through numerical simulations and theoretical calculations. It was determined that there are many microcrescent units with certain distributions on its surface. In fact, these crescents are effective in generating the “water-trapping” effect and forming a fluid-lubrication film, thus reducing the skin friction drag effectively. Contrasting to a smooth surface, the dynamics finite-element analysis indicated that the maximum drag-reduction rate of a bionic surface is 3.014% at 0.66 m/s flow rate. This study can be used as a reference for an in-depth analysis on the bionic drag reduction of boats, underwater vehicles, and so forth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call