Abstract

Previously, we reported that the countercurrent urine concentration mechanism in birds appears to operate by recycling of a single solute (NaCl), in which the thick ascending limb of looped nephrons provides an energy source. To determine the importance of the medullary collecting duct (MCD) in the countercurrent multiplier system, we examined in isolated and perfused MCDs from Japanese quail, Coturnix coturnix, the osmotic and/or diffusional water permeability and whether arginine vasotocin (AVT) regulates water permeability. We noted that dark cells that possess electron-dense cytoplasm and numerous mitochondria and light mucus-secreting cells exist in the cortical collecting duct (CD), whereas only mucus-secreting cells are present in the MCDs. The volume flux (Jv) in the MCDs from intact birds and that from the water-deprived birds were nearly zero; after exposure to a hyperosmotic bath and AVT (2 x 10(-5) M), the Jv was significantly higher in water-deprived birds. The diffusional water permeability (Pdw) was moderately high in MCDs bathed in an isosmotic bath in which the Pdw was increased slightly by AVT (10(-5) M, bath) and more markedly (10(-5) M) by forskolin (Fsk), whereas 1,9-dideoxy Fsk (an inactive analogue) showed no effect. Furthermore, the basal adenosine 3',5'-cyclic monophosphate (cAMP) levels were higher in the medulla than in the cortex and were stimulated only slightly by AVT (10(-5) M) and markedly by Fsk (10(-4) M) in both the cortex and medulla. These results in the C. coturnix CD indicate the following. 1) Two types of cells are present; whereas dark cells resemble mammalian intercalated cells morphologically, it is not certain whether mucus-secreting cells are equivalent to principal cells. 2) AVT increases Pdw via a cAMP mechanism; the relatively high basal Pdw and minor effect of AVT on Jv and Pdw suggest, however, that diffusional water movement across the MCD may occur without significant direct control by AVT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call