Abstract

The water transport behavior of the cathode catalyst layer (CCL) in a proton exchange membrane fuel cell (PEMFC) was investigated by comparing the performance of several cells containing different microporous layers (MPLs). The capillary pressure and effective diffusivity of the cathode gas diffusion layer (GDL) and the CCL play an important role in the transport of water generated in the PEMFC. Experimental data for various inlet humidities and air stoichiometries were evaluated using the modified water vapor activity with the capillary pressure of the MPL. The capillary pressures in the MPLs and CCL are approximated using a polynomial function of liquid saturation. There was a significant increase in the diffusion resistance of oxygen in the CCL, while that in the MPLs and CCL was moderate, which indicates that the CCL is susceptible to flooding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.