Abstract

Abstract. The hydrologic cycle in the Antarctic McMurdo Dry Valleys (MDV) is mainly controlled by surface energy balance. Water tracks are channel-shaped high-moisture zones in the active layer of permafrost soils and are important solute and water pathways in the MDV. We evaluated the hypothesis that water tracks alter the surface energy balance in this dry, cold, and ice-sheet-free environment during summer warming and may therefore be an increasingly important hydrologic feature in the MDV in the face of landscape response to climate change. The surface energy balance was measured for one water track and two off-track reference locations in Taylor Valley over 26 d of the Antarctic summer of 2012–2013. Turbulent atmospheric fluxes of sensible heat and evaporation were observed using the eddy-covariance method in combination with flux footprint modeling, which was the first application of this technique in the MDV. Soil heat fluxes were analyzed by measuring the heat storage change in the thawed layer and approximating soil heat flux at ice table depth by surface energy balance residuals. For both water track and reference locations over 50 % of net radiation was transferred to sensible heat exchange, about 30 % to melting of the seasonally thawed layer, and the remainder to evaporation. The net energy flux in the thawed layer was zero. For the water track location, evaporation was increased by a factor of 3.0 relative to the reference locations, ground heat fluxes by 1.4, and net radiation by 1.1, while sensible heat fluxes were reduced down to 0.7. Expecting a positive snow and ground ice melt response to climate change in the MDV, we entertained a realistic climate change response scenario in which a doubling of the land cover fraction of water tracks increases the evaporation from soil surfaces in lower Taylor Valley in summer by 6 % to 0.36 mm d−1. Possible climate change pathways leading to this change in landscape are discussed. Considering our results, an expansion of water track area would make new soil habitats accessible, alter soil habitat suitability, and possibly increase biological activity in the MDV. In summary, we show that the surface energy balance of water tracks distinctly differs from that of the dominant dry soils in polar deserts. With an expected increase in area covered by water tracks, our findings have implications for hydrology and soil ecosystems across terrestrial Antarctica.

Highlights

  • The McMurdo Dry Valleys (MDV) of southern Victoria Land are the largest ice-sheet-free region in continental Antarctica covering a total area of 22 700 km2 and an ice-free area of 4500 km2 (Levy, 2013)

  • If defining summer as the period during which the ice contained in the ground at some depth melts as indicated by temperatures equal to or above freezing, the length of the summer equates to 95, 82, or 67 d when considering the long-term observations from the MDV Long Term Ecological Research (LTER) site over the period 1993 to 2011 at depths of 0, 0.05, or 0.10 m, respectively

  • Since the active layer is typically not fully thawed before mid-January in the MDV (Adlam et al, 2010; Conovitz et al, 2006), we argue that the ice table was being lowered throughout the recording period and most of QIT was consumed by latent heat thawing the frozen layer, which explains the large energy fluxes matching soil heat flux observations in other permafrost regions (Lloyd et al, 2001; Lund et al, 2014; Westermann et al, 2009)

Read more

Summary

Introduction

The McMurdo Dry Valleys (MDV) of southern Victoria Land are the largest ice-sheet-free region in continental Antarctica covering a total area of 22 700 km and an ice-free area of 4500 km (Levy, 2013). The MDV are characterized by bare permafrost-dominated soils, glaciers, ice-covered lakes, and ephemeral streams (Gooseff et al, 2011; Lyons et al, 2000). Despite their geographical remoteness, the MDV are subject to a changing climate showing inconsistent trends in sign and varying magnitude over the past decades. From 1986 to 2002 the MDV experienced a cooling trend of 0.7 K per decade (Doran et al, 2002). The cooling stopped around 2002, when high temperatures and insolation caused strong glacial melt and permafrost thawing, which led to several well-documented persisting ecosystem and landscape changes including lake level rise Linhardt et al.: Surface energy and mass exchange of Antarctic water tracks

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call