Abstract

Water temperature (T) and salinity (S) ranges for the modern distribution of relict species of cold-water ostracods in and around the Japan Sea are summarized. These results provide new information on the ecology of species in the Omma-Manganji ostracod fauna and their survival through Pleistocene environmental changes. Fourteen representative species of this fauna belonging to the three families Hemicytheridae, Cytheruridae and Eucytheridae are discussed. The summer T-S habitat requirements were divided into three species groups: (a) Japan open sea-inner bay (0–20°C, 30–341; 9 species); (b) Japan-Alaska open sea (around 5°C, 31–341; 1 species); (c) Japan open sea (0–20°C, around 341; 4 species). The winter T-S of these three species groups falls in a single range of 0–5°C and 30–341. Their summer T-S conditions are characterized by a wide range either for T or S or both. The summer T range of most species reflects the Tsushima Warm Current water in summer. The winter T range of all the species corresponds to the coldest Japan Sea Intermediate-Proper Water through the year. The large T range difference between summer and winter is a remarkable character of most species. It is clear that most of these species examined here also live in temperatures as high as 20°C, but are generally cold-water species as a whole. The winter low T (less than 5°C) is considered to be critical for the survival of all of these species. These species were interpreted as having survived the cyclic environmental changes between glacial and interglacial periods by expansion or contraction of their distribution. Group (a) species can inhabit various T-S environments in summer. Furthermore, they can probably breed and maintain their populations, even in small areas such as the restricted inner bay, when suitable open sea conditions were lost. Group (b) species have only recently migrated to the low T-S region in the Northeast Pacific, and low T regions of deeper areas of the eastern Japan Sea where only a few species live. Group (c) species invaded the newly appearing T-S condition in the shallow-open areas of the Japan Sea, and have flourished, replacing the extinct species during the Pleistocene. Their wide T-S tolerance is considered to be the most advantageous factor for survival through the Pleistocene environmental fluctuations in the Japan Sea, linked with the glacio-eustatic sea-level changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.