Abstract
This research is mainly aimed to analyze and model the relationship of the binomial Rainfall-Piezometry. In this sense, the inherent causality contained in temporal hourly Rainfall and Groundwater levels (piezometry) data records has been taken. This has been done through Bayesian Causal Reasoning (BCR) which is technique belonging to Artificial Intelligence (AI) based on Bayesian Theorem. The methodology comprises two main stages, first an analytical method from classic regression analysis, and second, a Bayesian Causal Modelling Translation (BCMT) that itself comprises several iterative steps. This research ultimately becomes a tool for aquifers management that comprises a bivariate function made of two variables Rainfall and Piezometry (Temporal Groundwater level evolution). This innovative methodology has been successfully applied in the Quaternary aquifer of the Campo de Cartagena groundwater body, which is an aquifer system that directly is connected to Mar Menor coastal lagoon (Murcia region, SE Spain).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.