Abstract

A lysimeter study was conducted in the field in Karaj, Iran to investigate the effects of water table management on water quality of subsurface drainage effluents. Drain volumes, nitrate-N concentration, phosphorus concentration, and electrical conductivity of drain effluents were monitored during the growing seasons of alfalfa (Medicago scutellata). Totally 12 lysimeters consisted of four treatments were used in this study, of which nine of them were equipped with subirrigation (SI) and the other three with free drainage (FD) systems. Annual alfalfa (Medicago scutellata) was planted in all lysimeters. Water table levels were kept at 30 cm (SI30), 50 cm (SI50), and 70 cm (SI70) below the soil surface in SI-lysimeters and more than 100 cm below the soil surface in FD-lysimeters. The results of this 2-year study showed a significant reduction in nitrate-N concentrations in SI-lysimeters compared to FD-lysimeters. In 2005, the mean nitrate-N concentrations in drainage effluent were reduced by 84% in the SI30 and by 82% in the SI50, relative to FD. Similarly, in 2006, drain water depth and nitrate-N concentrations were significantly reduced relative to FD. The forage dry matter production from SI30 and SI50 were significantly higher than those from FD in both years. In 2006, the average of dry matter production was increased by 69 and 89% by the SI30 and SI50, respectively, relative to FD. The average electrical conductivity of drainage water was reduced in SI lysimeters compared to FD lysimeters that meet Iranian standard level (3 dS/m). There are no statistically significant differences in phosphorous concentration in drainage water of different treatments. Finally, the results of this 2-year study indicate that the water table management practices are economically and environmentally feasible in Iran in order to have a sustainable agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call