Abstract

Physicochemical properties of the graphene-water interface have been investigated to scrutinize the perturbations with respect to the graphene-air interface, in terms of changes in optical and vibrational spectra, as well as in the 3D network of water. Experimental investigations were carried out using Raman spectroscopy and laser scanning confocal microscopy, and integrated with density functional theory (DFT) calculations. Results evidence a substantial orientation of the hydrogen-bonded water molecules at the interfacial region, which, in turn, induces disorder in the water clusters and interfacial charge transfer phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.