Abstract

Abstract. Understanding of terrestrial carbon and water cycles is currently hampered by an uncertainty in how to capture the large variety of plant responses to drought. In FLUXNET, the global network of CO2 and H2O flux observations, many sites do not uniformly report the ancillary variables needed to study drought response physiology. To this end, we outline two data-driven indicators based on diurnal energy, water, and carbon flux patterns derived directly from the eddy covariance data and based on theorized physiological responses to hydraulic and non-stomatal limitations. Hydraulic limitations (i.e. intra-plant limitations on water movement) are proxied using the relative diurnal centroid (CET*), which measures the degree to which the flux of evapotranspiration (ET) is shifted toward the morning. Non-stomatal limitations (e.g. inhibitions of biochemical reactions, RuBisCO activity, and/or mesophyll conductance) are characterized by the Diurnal Water–Carbon Index (DWCI), which measures the degree of coupling between ET and gross primary productivity (GPP) within each day. As a proof of concept we show the response of the metrics at six European sites during the 2003 heat wave event, showing a varied response of morning shifts and decoupling. Globally, we found indications of hydraulic limitations in the form of significantly high frequencies of morning-shifted days in dry/Mediterranean climates and savanna/evergreen plant functional types (PFTs), whereas high frequencies of decoupling were dominated by dry climates and grassland/savanna PFTs indicating a prevalence of non-stomatal limitations in these ecosystems. Overall, both the diurnal centroid and DWCI were associated with high net radiation and low latent energy typical of drought. Using three water use efficiency (WUE) models, we found the mean differences between expected and observed WUE to be −0.09 to 0.44 µmol mmol−1 and −0.29 to −0.40 µmol mmol−1 for decoupled and morning-shifted days, respectively, compared to mean differences −1.41 to −1.42 µmol mmol−1 in dry conditions, suggesting that morning shifts/hydraulic responses are associated with an increase in WUE, whereas decoupling/non-stomatal limitations are not.

Highlights

  • Processes such as photosynthesis and transpiration are so intimately linked that knowledge and assumptions about one process are needed to accurately understand the other

  • In order to provide a consistent measure of ecosystem dryness that can be utilized across sites, the ratio of water evaporated to potential water evaporated was calculated as evaporative fraction (EF), or the fraction of actual ET to Potential ET (PET)

  • CE∗T and Diurnal Water–Carbon Index (DWCI) time courses for six sites from Europe are shown in Fig. 3, with an emphasis on 2003 when the continent was struck by a heat wave that was shown to effect both the carbon and water cycles

Read more

Summary

Introduction

Processes such as photosynthesis and transpiration are so intimately linked that knowledge and assumptions about one process are needed to accurately understand the other. The relationship between carbon and water cycles is not fully understood (Tang et al, 2014), passing the biases and uncertainties caused by an incomplete carbon–water framework back onto flux estimates and global water and carbon cycle interactions and dynamics in general (Keenan et al, 2013; Schlesinger and Jasechko, 2014; Ito and Inatomi, 2012). Most theoretical frameworks make some form of assumption that carbon assimilation (A) and water losses (T ) are both contingent primarily on leaf stomatal conductance (gs). This assumed relationship allows us to pass between the realms of carbon and water, based on the assumption that at any given time both A and T are proportional to the stomatal conductance multiplied by the difference in internal and external CO2 and water vapor concentrations.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call