Abstract

AbstractThe ethanol/water separation challenge highlights the adsorption capacity/selectivity trade‐off problem. We show that the target guest can serve as a gating component of the host to block the undesired guest, giving molecular sieving effect for the adsorbent possessing large pores. Two hydrophilic/water‐stable metal azolate frameworks were designed to compare the effects of gating and pore‐opening flexibility. Large amounts (up to 28.7 mmol g−1) of ethanol with fuel‐grade (99.5 %+) and even higher purities (99.9999 %+) can be produced in a single adsorption process from not only 95 : 5 but also 10 : 90 ethanol/water mixtures. More interestingly, the pore‐opening adsorbent possessing large pore apertures showed not only high water adsorption capacity but also exceptionally high water/ethanol selectivity characteristic of molecular sieving. Computational simulations demonstrated the critical role of guest‐anchoring aperture for the guest‐dominated gating process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.